Geometric Inequalities on Riemannian and Sub-Riemannian Manifolds by Heat Semigroups Techniques

Fabrice Baudoin*

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapport/proceedingBidrag til bog/antologiForskningpeer review

Abstract

In those lecture notes, we review some of the theory of diffusion operators and applications of heat semigroups methods in Riemannian geometry. In particular we will show how Ricci lower bounds and Bochner’s formula lead to the notion of curvature dimension-equality for the Laplace-Beltrami operator and how this inequality only can be used to prove geometric and functional inequalities such as Li-Yau, Sobolev or isoperimetric inequalities. Some generalizations to sub-Riemannian geometry are given at the end.

OriginalsprogEngelsk
TitelLecture Notes in Mathematics
Antal sider85
ForlagSpringer Science and Business Media Deutschland GmbH
Publikationsdato2022
Sider7-91
DOI
StatusUdgivet - 2022
Udgivet eksterntJa
NavnLecture Notes in Mathematics
Vol/bind2296
ISSN0075-8434

Fingeraftryk

Dyk ned i forskningsemnerne om 'Geometric Inequalities on Riemannian and Sub-Riemannian Manifolds by Heat Semigroups Techniques'. Sammen danner de et unikt fingeraftryk.

Citationsformater