Genomic selection improves the possibility of applying multiple breeding programs in different environments

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Genomic selection improves the possibility of applying multiple breeding programs in different environments. / Slagboom, M.; Kargo, M.; Sørensen, A. C.; Thomasen, J. R.; Mulder, H. A.

I: Journal of Dairy Science, Bind 102, Nr. 9, 01.09.2019, s. 8197-8209.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{b8e067b4290f4fbfbb5ea54a17d08109,
title = "Genomic selection improves the possibility of applying multiple breeding programs in different environments",
abstract = "One joint breeding program (BP) for different dairy cattle environments can be advantageous for genetic gain depending on the genetic correlation between environments (rg). The break-even correlation (rb) refers to the specific rg where genetic gain with 1 joint BP is equal to the genetic gain of 2 environment-specific BP. One joint BP has the highest genetic gain if rg is higher than rb, whereas 2 environment-specific BP have higher genetic gain if rg is lower than rb. Genetic gain in this context is evaluated from a breeding company's perspective that aims to improve genetic gain in both environments. With the implementation of genomic selection, 2 types of collaboration can be identified: exchanging breeding animals and exchanging genomic information. The aim of this study was to study genetic gain in multiple environments with different breeding strategies with genomic selection. The specific aims were (1) to find rb when applying genomic selection; (2) to assess how much genetic gain is lost when applying a suboptimal breeding strategy; (3) to study the effect of the reliability of direct genomic values, number of genotyped animals, and environments of different size on rb and genetic gain; and (4) to find rb from each environment's point of view. Three breeding strategies were simulated: 1 joint BP for both environments, 2 environment-specific BP with selection of bulls across environments, and 2 environment-specific BP with selection of bulls within environments. The rb was 0.65 and not different from rb with progeny-testing breeding programs when compared at the same selection intensity. The maximum loss in genetic gain in a suboptimal breeding strategy was 24{\%}. A higher direct genomic value reliability and an increased number of genotyped selection candidates increased genetic gain, and the effect on rb was not large. A different size in 2 environments decreased rb by, at most, 0.10 points. From a large environment's point of view, 1 joint BP was the optimal breeding strategy in most scenarios. From a small environment's point of view, 1 joint BP was only the optimal breeding strategy at high rg. When the exchange of breeding animals between environments was restricted, genetic gain could still increase in each environment. This was due to the exchange of genomic information between environments, even when rg between environments were as low as 0.4. Thus, genomic selection improves the possibility of applying environment-specific BP.",
keywords = "breeding strategy, dairy cow, genetic gain, genotype by environment interaction",
author = "M. Slagboom and M. Kargo and S{\o}rensen, {A. C.} and Thomasen, {J. R.} and Mulder, {H. A.}",
year = "2019",
month = "9",
day = "1",
doi = "10.3168/jds.2018-15939",
language = "English",
volume = "102",
pages = "8197--8209",
journal = "Journal of Dairy Science",
issn = "0022-0302",
publisher = "Elsevier Inc.",
number = "9",

}

RIS

TY - JOUR

T1 - Genomic selection improves the possibility of applying multiple breeding programs in different environments

AU - Slagboom, M.

AU - Kargo, M.

AU - Sørensen, A. C.

AU - Thomasen, J. R.

AU - Mulder, H. A.

PY - 2019/9/1

Y1 - 2019/9/1

N2 - One joint breeding program (BP) for different dairy cattle environments can be advantageous for genetic gain depending on the genetic correlation between environments (rg). The break-even correlation (rb) refers to the specific rg where genetic gain with 1 joint BP is equal to the genetic gain of 2 environment-specific BP. One joint BP has the highest genetic gain if rg is higher than rb, whereas 2 environment-specific BP have higher genetic gain if rg is lower than rb. Genetic gain in this context is evaluated from a breeding company's perspective that aims to improve genetic gain in both environments. With the implementation of genomic selection, 2 types of collaboration can be identified: exchanging breeding animals and exchanging genomic information. The aim of this study was to study genetic gain in multiple environments with different breeding strategies with genomic selection. The specific aims were (1) to find rb when applying genomic selection; (2) to assess how much genetic gain is lost when applying a suboptimal breeding strategy; (3) to study the effect of the reliability of direct genomic values, number of genotyped animals, and environments of different size on rb and genetic gain; and (4) to find rb from each environment's point of view. Three breeding strategies were simulated: 1 joint BP for both environments, 2 environment-specific BP with selection of bulls across environments, and 2 environment-specific BP with selection of bulls within environments. The rb was 0.65 and not different from rb with progeny-testing breeding programs when compared at the same selection intensity. The maximum loss in genetic gain in a suboptimal breeding strategy was 24%. A higher direct genomic value reliability and an increased number of genotyped selection candidates increased genetic gain, and the effect on rb was not large. A different size in 2 environments decreased rb by, at most, 0.10 points. From a large environment's point of view, 1 joint BP was the optimal breeding strategy in most scenarios. From a small environment's point of view, 1 joint BP was only the optimal breeding strategy at high rg. When the exchange of breeding animals between environments was restricted, genetic gain could still increase in each environment. This was due to the exchange of genomic information between environments, even when rg between environments were as low as 0.4. Thus, genomic selection improves the possibility of applying environment-specific BP.

AB - One joint breeding program (BP) for different dairy cattle environments can be advantageous for genetic gain depending on the genetic correlation between environments (rg). The break-even correlation (rb) refers to the specific rg where genetic gain with 1 joint BP is equal to the genetic gain of 2 environment-specific BP. One joint BP has the highest genetic gain if rg is higher than rb, whereas 2 environment-specific BP have higher genetic gain if rg is lower than rb. Genetic gain in this context is evaluated from a breeding company's perspective that aims to improve genetic gain in both environments. With the implementation of genomic selection, 2 types of collaboration can be identified: exchanging breeding animals and exchanging genomic information. The aim of this study was to study genetic gain in multiple environments with different breeding strategies with genomic selection. The specific aims were (1) to find rb when applying genomic selection; (2) to assess how much genetic gain is lost when applying a suboptimal breeding strategy; (3) to study the effect of the reliability of direct genomic values, number of genotyped animals, and environments of different size on rb and genetic gain; and (4) to find rb from each environment's point of view. Three breeding strategies were simulated: 1 joint BP for both environments, 2 environment-specific BP with selection of bulls across environments, and 2 environment-specific BP with selection of bulls within environments. The rb was 0.65 and not different from rb with progeny-testing breeding programs when compared at the same selection intensity. The maximum loss in genetic gain in a suboptimal breeding strategy was 24%. A higher direct genomic value reliability and an increased number of genotyped selection candidates increased genetic gain, and the effect on rb was not large. A different size in 2 environments decreased rb by, at most, 0.10 points. From a large environment's point of view, 1 joint BP was the optimal breeding strategy in most scenarios. From a small environment's point of view, 1 joint BP was only the optimal breeding strategy at high rg. When the exchange of breeding animals between environments was restricted, genetic gain could still increase in each environment. This was due to the exchange of genomic information between environments, even when rg between environments were as low as 0.4. Thus, genomic selection improves the possibility of applying environment-specific BP.

KW - breeding strategy

KW - dairy cow

KW - genetic gain

KW - genotype by environment interaction

UR - http://www.scopus.com/inward/record.url?scp=85068902038&partnerID=8YFLogxK

U2 - 10.3168/jds.2018-15939

DO - 10.3168/jds.2018-15939

M3 - Journal article

C2 - 31326182

AN - SCOPUS:85068902038

VL - 102

SP - 8197

EP - 8209

JO - Journal of Dairy Science

JF - Journal of Dairy Science

SN - 0022-0302

IS - 9

ER -