TY - JOUR
T1 - Genetic analysis on infrared-predicted milk minerals for Danish dairy cattle
AU - Zaalberg, R M
AU - Poulsen, N A
AU - Bovenhuis, H
AU - Sehested, J
AU - Larsen, L B
AU - Buitenhuis, A J
N1 - © 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PY - 2021/8
Y1 - 2021/8
N2 - A group of milk components that has shown potential to be predicted with milk spectra is milk minerals. Milk minerals are important for human health and cow health. Having an inexpensive and fast way to measure milk mineral concentrations would open doors for research, herd management, and selective breeding. The first aim of this study was to predict milk minerals with infrared milk spectra. Additionally, milk minerals were predicted with infrared-predicted fat, protein, and lactose content. The second aim was to perform a genetic analysis on infrared-predicted milk minerals, to identify QTL, and estimate variance components. For training and validating a multibreed prediction model for individual milk minerals, 264 Danish Jersey cows and 254 Danish Holstein cows were used. Partial least square regression prediction models were built for Ca, Cu, Fe, K, Mg, Mn, Na, P, Se, and Zn based on 80% of the cows, selected randomly. Prediction models were externally validated with 8 herds based on the remaining 20% of the cows. The prediction models were applied on a population of approximately 1,400 Danish Holstein cows with 5,600 infrared spectral records and 1,700 Danish Jersey cows with 7,200 infrared spectral records. Cows from this population had 50k imputed genotypes. Prediction accuracy was good for P and Ca, with external R2 ≥ 0.80 and a relative prediction error of 5.4% for P and 6.3% for Ca. Prediction was moderately good for Na with an external R2 of 0.63, and a relative error of 18.8%. Prediction accuracies of milk minerals based on infrared-predicted fat, protein, and lactose content were considerably lower than those based on the infrared milk spectra. This shows that the milk infrared spectrum contains valuable information on milk minerals, which is currently not used. Heritability for infrared-predicted Ca, Na, and P varied from low (0.13) to moderate (0.36). Several QTL for infrared-predicted milk minerals were observed that have been associated with gold standard milk minerals previously. In conclusion, this study has shown infrared milk spectra were good at predicting Ca, Na, and P in milk. Infrared-predicted Ca, Na, and P had low to moderate heritability estimates.
AB - A group of milk components that has shown potential to be predicted with milk spectra is milk minerals. Milk minerals are important for human health and cow health. Having an inexpensive and fast way to measure milk mineral concentrations would open doors for research, herd management, and selective breeding. The first aim of this study was to predict milk minerals with infrared milk spectra. Additionally, milk minerals were predicted with infrared-predicted fat, protein, and lactose content. The second aim was to perform a genetic analysis on infrared-predicted milk minerals, to identify QTL, and estimate variance components. For training and validating a multibreed prediction model for individual milk minerals, 264 Danish Jersey cows and 254 Danish Holstein cows were used. Partial least square regression prediction models were built for Ca, Cu, Fe, K, Mg, Mn, Na, P, Se, and Zn based on 80% of the cows, selected randomly. Prediction models were externally validated with 8 herds based on the remaining 20% of the cows. The prediction models were applied on a population of approximately 1,400 Danish Holstein cows with 5,600 infrared spectral records and 1,700 Danish Jersey cows with 7,200 infrared spectral records. Cows from this population had 50k imputed genotypes. Prediction accuracy was good for P and Ca, with external R2 ≥ 0.80 and a relative prediction error of 5.4% for P and 6.3% for Ca. Prediction was moderately good for Na with an external R2 of 0.63, and a relative error of 18.8%. Prediction accuracies of milk minerals based on infrared-predicted fat, protein, and lactose content were considerably lower than those based on the infrared milk spectra. This shows that the milk infrared spectrum contains valuable information on milk minerals, which is currently not used. Heritability for infrared-predicted Ca, Na, and P varied from low (0.13) to moderate (0.36). Several QTL for infrared-predicted milk minerals were observed that have been associated with gold standard milk minerals previously. In conclusion, this study has shown infrared milk spectra were good at predicting Ca, Na, and P in milk. Infrared-predicted Ca, Na, and P had low to moderate heritability estimates.
KW - mid infrared
KW - novel phenotype
KW - spectroscopy
KW - PHOSPHORUS
KW - PROTEIN
KW - BOVINE-MILK
KW - TECHNOLOGICAL PROPERTIES
KW - COW MILK
KW - ACETONE
KW - HOLSTEIN
KW - CALCIUM
KW - FATTY-ACID
KW - MIDINFRARED SPECTROSCOPY
KW - Lactation
KW - Minerals
KW - Cattle/genetics
KW - Lactose
KW - Animals
KW - Denmark
KW - Female
KW - Milk
U2 - 10.3168/jds.2020-19638
DO - 10.3168/jds.2020-19638
M3 - Journal article
C2 - 33985781
SN - 0022-0302
VL - 104
SP - 8947
EP - 8958
JO - Journal of Dairy Science
JF - Journal of Dairy Science
IS - 8
ER -