Generalized Stochastic Areas, Winding Numbers, and Hyperbolic Stiefel Fibrations

Fabrice Baudoin, Nizar Demni, Jing Wang*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

We study the Brownian motion on the non-compact Grassmann manifold and some of its functionals. The key point is to realize this Brownian motion as a matrix diffusion process, use matrix stochastic calculus and take advantage of the hyperbolic Stiefel fibration to study a functional that can be understood in that setting as a generalized stochastic area process. In particular, a connection to the generalized Maass Laplacian of the complex hyperbolic space is presented and applications to the study of Brownian windings in the Lie group are then given.

OriginalsprogEngelsk
TidsskriftInternational Mathematics Research Notices
Vol/bind2023
Nummer9
Sider (fra-til)7925-7960
Antal sider36
ISSN1073-7928
DOI
StatusUdgivet - 1 maj 2023
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Generalized Stochastic Areas, Winding Numbers, and Hyperbolic Stiefel Fibrations'. Sammen danner de et unikt fingeraftryk.

Citationsformater