Generalized friezes and a modified Caldero-Chapoton map depending on a rigid object

Thorsten Holm, Peter Jørgensen

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

10 Citationer (Scopus)

Abstract

The (usual) Caldero-Chapoton map is a map from the set of objects of a category to a Laurent polynomial ring over the integers. In the case of a cluster category, it maps reachable indecomposable objects to the corresponding cluster variables in a cluster algebra. This formalizes the idea that the cluster category is a categorification of the cluster algebra. The definition of the Caldero-Chapoton map requires the category to be 2-Calabi-Yau, and the map depends on a cluster-tilting object in the category. We study a modified version of the Caldero-Chapoton map which requires only that the category have a Serre functor and depends only on a rigid object in the category. It is well known that the usual Caldero-Chapoton map gives rise to so-called friezes, for instance, Conway-Coxeter friezes. We show that the modified Caldero-Chapoton map gives rise to what we call generalized friezes and that, for cluster categories of Dynkin type A, it recovers the generalized friezes introduced by combinatorial means in recent work by the authors and Bessenrodt.

OriginalsprogEngelsk
TidsskriftNagoya Mathematical Journal
Vol/bind218
Nummer1
Sider (fra-til)101-124
Antal sider24
ISSN0027-7630
DOI
StatusUdgivet - 2015
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Generalized friezes and a modified Caldero-Chapoton map depending on a rigid object'. Sammen danner de et unikt fingeraftryk.

Citationsformater