Generalized Fourier transforms Fk,a

Bidragets oversatte titel: Transformation de Fourier généralisée Fk,a

Ben Said Salem, Toshiyuki Kobayashi, Bent Ørsted

    Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review


    We construct a two-parameter family of actions ωk,a of the Lie algebra View the MathML source by differential-difference operators on View the MathML source. Here, k is a multiplicity-function for the Dunkl operators, and a>0 arises from the interpolation of the Weil representation and the minimal unitary representation of the conformal group. The action ωk,a lifts to a unitary representation of the universal covering of View the MathML source, and can even be extended to a holomorphic semigroup Ωk,a. Our semigroup generalizes the Hermite semigroup studied by R. Howe (k≡0, a=2) and the Laguerre semigroup by T. Kobayashi and G. Mano (k≡0, a=1). The boundary value of our semigroup Ωk,a provides us with (k,a)-generalized Fourier transforms View the MathML source, which includes the Dunkl transform View the MathML source (a=2) and a new unitary operator View the MathML source (a=1) as a Dunkl-type generalization of the classical Hankel transform.
    Bidragets oversatte titelTransformation de Fourier généralisée Fk,a
    TidsskriftComptes Rendus Mathématique
    Sider (fra-til)1119-1124
    Antal sider6
    StatusUdgivet - 2009


    Dyk ned i forskningsemnerne om 'Transformation de Fourier généralisée Fk,a'. Sammen danner de et unikt fingeraftryk.