Generalized almost-Kähler–Ricci solitons

Michael Albanese, Giuseppe Barbaro*, Mehdi Lejmi

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

We generalize Kähler–Ricci solitons to the almost-Kähler setting as the zeros of Inoue's moment map [25], and show that their existence is an obstruction to the existence of first-Chern–Einstein almost-Kähler metrics on compact symplectic Fano manifolds. We prove deformation results of such metrics in the 4-dimensional case. Moreover, we study the Lie algebra of holomorphic vector fields on 2n-dimensional compact symplectic Fano manifolds admitting generalized almost-Kähler–Ricci solitons. In particular, we partially extend Matsushima's theorem [41] to compact first-Chern–Einstein almost-Kähler manifolds.

OriginalsprogEngelsk
Artikelnummer102193
TidsskriftDifferential Geometry and its Application
Vol/bind97
ISSN0926-2245
DOI
StatusUdgivet - dec. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Generalized almost-Kähler–Ricci solitons'. Sammen danner de et unikt fingeraftryk.

Citationsformater