Gelfand spectra in Grothendieck toposes using geometric mathematics

Bas Spitters, Steven Vickers, Sander Wolters

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisKonferenceartikelForskningpeer review

3 Citationer (Scopus)

Abstract

In the (covariant) topos approach to quantum theory by Heunen, Landsman and Spitters, one associates to each unital C∗-algebra A a topos T (A) of sheaves on a locale and a commutative C∗-algebra A within that topos. The Gelfand spectrum of A is a locale Σ in this topos, which is equivalent to a bundle over the base locale. We further develop this external presentation of the locale Σ, by noting that the construction of the Gelfand spectrum in a general topos can be described using geometric logic. As a consequence, the spectrum, seen as a bundle, is computed fibrewise. As a by-product of the geometricity of Gelfand spectra, we find an explicit external description of the spectrum whenever the topos is a functor category. As an intermediate result we show that locally perfect maps compose, so that the externalization of a locally compact locale in a topos of sheaves over a locally compact locale is locally compact, too.

OriginalsprogEngelsk
TidsskriftElectronic Proceedings in Theoretical Computer Science, EPTCS
Vol/bind158
Sider (fra-til)77-107
Antal sider31
ISSN2075-2180
DOI
StatusUdgivet - 1 jan. 2014
Udgivet eksterntJa
Begivenhed9th Workshop on Quantum Physics and Logic, QPL 2012 - Brussels, Belgien
Varighed: 10 okt. 201212 okt. 2012

Konference

Konference9th Workshop on Quantum Physics and Logic, QPL 2012
Land/OmrådeBelgien
ByBrussels
Periode10/10/201212/10/2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'Gelfand spectra in Grothendieck toposes using geometric mathematics'. Sammen danner de et unikt fingeraftryk.

Citationsformater