Future perspectives of thermal energy storage with metal hydrides

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Kandavel Manickam, University of Nottingham
  • ,
  • Priyen Mistry, University of Nottingham
  • ,
  • Gavin Walker, University of Nottingham
  • ,
  • David Grant, University of Nottingham
  • ,
  • Craig E. Buckley, Curtin University
  • ,
  • Terry D. Humphries, Curtin University
  • ,
  • Mark Paskevicius, Curtin University
  • ,
  • Torben Jensen
  • Rene Albert, Max-Planck-Institut für Kohlenforschung
  • ,
  • Kateryna Peinecke, Max-Planck-Institut für Kohlenforschung
  • ,
  • Michael Felderhoff, Max-Planck-Institut für Kohlenforschung

Thermochemical energy storage materials have advantage of much higher energy densities compared to latent or sensible heat storage materials. Metal hydrides show good reversibility and cycling stability combined with high enthalpies. They can be used for short and long-term heat storage applications and can increase the overall flexibility and efficiency of solar thermal energy production. Metal hydrides with working temperatures less than 500 °C were in the focus of research and development over the last years. For the new generation of solar thermal energy plants new hydrides materials with working temperatures above 600 °C must be developed and characterized. In addition to thorough research on new metal hydrides, the construction and engineering of heat storage systems at these high temperatures are challenging. Corrosion problems, hydrogen embrittlement and selection of heat transfer fluids are significant topics for future research activities.

OriginalsprogEngelsk
TidsskriftInternational Journal of Hydrogen Energy
Vol/bind44
Nummer15
Sider (fra-til)7738-7745
Antal sider8
ISSN0360-3199
DOI
StatusUdgivet - 2019

Se relationer på Aarhus Universitet Citationsformater

ID: 149729197