Friezes, weak friezes, and T-paths

İlke Çanakçı*, Peter Jørgensen

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

25 Downloads (Pure)

Abstract

Frieze patterns form a nexus between algebra, combinatorics, and geometry. T-paths with respect to triangulations of surfaces have been used to obtain expansion formulae for cluster variables. This paper will introduce the concepts of weak friezes and T-paths with respect to dissections of polygons. Our main result is that weak friezes are characterised by satisfying an expansion formula which we call the T-path formula. We also show that weak friezes can be glued together, and that the resulting weak frieze is a frieze if and only if so was each of the weak friezes being glued.

OriginalsprogEngelsk
Artikelnummer102253
TidsskriftAdvances in Applied Mathematics
Vol/bind131
ISSN0196-8858
DOI
StatusUdgivet - okt. 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Friezes, weak friezes, and T-paths'. Sammen danner de et unikt fingeraftryk.

Citationsformater