Forecast density combinations of dynamic models and data driven portfolio strategies

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • N. Baştürk, Maastricht University
  • ,
  • A. Borowska, Tinbergen Institute Amsterdam, Vrije Universiteit Amsterdam, University of Glasgow
  • ,
  • S. Grassi
  • L. Hoogerheide, Tinbergen Institute Amsterdam, Vrije Universiteit Amsterdam
  • ,
  • H. K. van Dijk, Tinbergen Institute Amsterdam, Erasmus University Rotterdam, Norges Bank

A dynamic asset-allocation model is specified in probabilistic terms as a combination of return distributions resulting from multiple pairs of dynamic models and portfolio strategies based on momentum patterns in US industry returns. The nonlinear state space representation of the model allows efficient and robust simulation-based Bayesian inference using a novel non-linear filter. Combination weights can be cross-correlated and correlated over time using feedback mechanisms. Diagnostic analysis gives insight into model and strategy misspecification. Empirical results show that a smaller flexible model-strategy combination performs better in terms of expected return and risk than a larger basic model-strategy combination. Dynamic patterns in combination weights and diagnostic learning provide useful signals for improved modeling and policy, in particular, from a risk-management perspective.

OriginalsprogEngelsk
TidsskriftJournal of Econometrics
Vol/bind210
Nummer1
Sider (fra-til)170-186
Antal sider17
ISSN0304-4076
DOI
StatusUdgivet - maj 2019
Eksternt udgivetJa

Se relationer på Aarhus Universitet Citationsformater

ID: 180302632