Aarhus Universitets segl

Force potentiation during eccentric contractions in rat skeletal muscle

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Postactivation potentiation refers to an acute enhancement of contractile properties following muscle activity. Previously, the effects of prior muscle activation on eccentric force at tetanic activation frequencies have only been sparsely reported. This paper aimed to study acute activity-induced effects on eccentric force of slow and fast-twitch muscles and characterize them in relation to postactivation potentiation. We elicited eccentric contractions in isolated rat extensor digitorum longus and soleus muscles by actively lengthening muscles at a constant velocity. We assessed contractile properties by measuring force over shortly interspaced, identical eccentric, and isometric contractions. We then analyzed stretch force, isometric peak force, rate of force development, and relaxation times. Finally, we compared the time courses for the development and cessation of changes in stretch force to known features of postactivation potentiation. In extensor digitorum longus, muscles stretch force consistently increased in a contraction-to-contraction manner by up to 49% [95% confidence interval (CI): 35-64%] whereas isometric peak force simultaneously showed minor declines (8%, 95% CI: 5-10%). The development and cessation of eccentric force potentiation coincided with the development of twitch potentiation and increases in rate of force development. In soleus muscles we found no consistent eccentric potentiation. Characterization of the increase in eccentric force revealed that force only increased in the very beginning of an active stretch. Eccentric force at tetanic activation frequencies potentiates substantially in extensor digitorum longus muscles over consecutive contractions with a time course coinciding with postactivation potentiation. Such eccentric potentiation may be important in sport performance.NEW & NOTEWORTHY Force during eccentric contractions can increase to a magnitude that may have profound consequences for our understanding of skeletal muscle locomotion. This increase in eccentric force occurs over consecutive, shortly interspaced, tetanic contractions in rat extensor digitorum longus muscles-not in rat soleus muscles-and coincides with well-known traits of postactivation potentiation. Eccentric force potentiation may significantly enhance muscle performance in activities involving stretch-shortening cycles.

OriginalsprogEngelsk
TidsskriftJournal of applied physiology (Bethesda, Md. : 1985)
Vol/bind134
Nummer3
Sider (fra-til)777-785
Antal sider9
ISSN8750-7587
DOI
StatusUdgivet - mar. 2023

Se relationer på Aarhus Universitet Citationsformater

ID: 321634914