Fock model and Segal-Bargmann transform for minimal representations of Hermitian Lie groups

Joachim Hilgert, Toshiyuki Kobayashi, Jan Möllers, Bent Ørsted

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

975 Downloads (Pure)

Abstract

For any Hermitian Lie group G of tube type we construct a Fock model of its minimal representation. The Fock space is defined on the minimal nilpotent K_C-orbit X in p_C and the L^2-inner product involves a K-Bessel function as density. Here K is a maximal compact subgroup of G, and g_C=k_C+p_C is a complexified Cartan decomposition. In this realization the space of k-finite vectors consists of holomorphic polynomials on X. The reproducing kernel of the Fock space is calculated explicitly in terms of an I-Bessel function. We further find an explicit formula of a generalized Segal-Bargmann transform which intertwines the Schroedinger and Fock model. Its kernel involves the same I-Bessel function. Using the Segal--Bargmann transform we also determine the integral kernel of the unitary inversion operator in the Schroedinger model which is given by a J-Bessel function.
OriginalsprogEngelsk
TidsskriftJournal of Functional Analysis
Vol/bind263
Nummer11
Sider (fra-til)3492–3563
Antal sider72
ISSN0022-1236
DOI
StatusUdgivet - 25 mar. 2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'Fock model and Segal-Bargmann transform for minimal representations of Hermitian Lie groups'. Sammen danner de et unikt fingeraftryk.

Citationsformater