Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
}
TY - JOUR
T1 - Flux Growth, Crystal Structures, and Electronic Properties of the Ternary Intermetallic Compounds Ca3Pd4Bi8 and Ca3Pt4Bi8
AU - Ovchinnikov, Alexander
AU - Mudring, Anja Verena
N1 - Publisher Copyright: © 2022 American Chemical Society.
PY - 2022/6
Y1 - 2022/6
N2 - Reaction of the elements yielded Ca3Pt4Bi8 and CaPtBi, which are, to the best of our knowledge, the first reported ternary Ca-Pt-Bi compounds. The compounds crystallize isostructural to the Pd analogs Ca3Pd4Bi8 (own structure type) and CaPdBi (TiNiSi structure type), respectively. Employing a multistep temperature treatment allows for the growth of mm-sized single crystals of Ca3Pd4Bi8 and Ca3Pt4Bi8 from a Bi self-flux. Their crystal structures can be visualized as consisting of a threedimensional extended polyanion [M4Bi8]6- (M = Pd, Pt), composed of interlinked M-Bi chains propagating along the c direction, and Ca2+ cations residing in one-dimensional channels between the chains. First-principles calculations reveal quasi-onedimensional electronic behavior with reduced effective electron masses along [001]. Bader analysis points to a strong anionic character of the M species (M = Pd, Pt) in Ca3M4Bi8. Thus, it is more appropriate to address the compounds Ca3Pd4Bi8 and Ca3Pt4Bi8 as a palladide and platinide, respectively. Magnetization measurements indicate diamagnetic behavior with no indications for superconductivity down to 2 K. Electrical resistivity data are consistent with metallic behavior and suggest predominant electron-phonon scattering.
AB - Reaction of the elements yielded Ca3Pt4Bi8 and CaPtBi, which are, to the best of our knowledge, the first reported ternary Ca-Pt-Bi compounds. The compounds crystallize isostructural to the Pd analogs Ca3Pd4Bi8 (own structure type) and CaPdBi (TiNiSi structure type), respectively. Employing a multistep temperature treatment allows for the growth of mm-sized single crystals of Ca3Pd4Bi8 and Ca3Pt4Bi8 from a Bi self-flux. Their crystal structures can be visualized as consisting of a threedimensional extended polyanion [M4Bi8]6- (M = Pd, Pt), composed of interlinked M-Bi chains propagating along the c direction, and Ca2+ cations residing in one-dimensional channels between the chains. First-principles calculations reveal quasi-onedimensional electronic behavior with reduced effective electron masses along [001]. Bader analysis points to a strong anionic character of the M species (M = Pd, Pt) in Ca3M4Bi8. Thus, it is more appropriate to address the compounds Ca3Pd4Bi8 and Ca3Pt4Bi8 as a palladide and platinide, respectively. Magnetization measurements indicate diamagnetic behavior with no indications for superconductivity down to 2 K. Electrical resistivity data are consistent with metallic behavior and suggest predominant electron-phonon scattering.
UR - http://www.scopus.com/inward/record.url?scp=85133102665&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.2c01248
DO - 10.1021/acs.inorgchem.2c01248
M3 - Journal article
C2 - 35704846
AN - SCOPUS:85133102665
VL - 61
SP - 9756
EP - 9766
JO - Inorganic Chemistry
JF - Inorganic Chemistry
SN - 0020-1669
IS - 25
ER -