First measurements of field metabolic rate in wild juvenile fishes show strong thermal sensitivity but variations between sympatric ecotypes

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Ming Tsung Chung, University of Tokyo
  • ,
  • Kris Emil Mose Jørgensen
  • Clive N. Trueman, University of Southampton
  • ,
  • Halvor Knutsen, Institute of Marine Research, University of Agder
  • ,
  • Per Erik Jorde, Institute of Marine Research
  • ,
  • Peter Grønkjær

The relationship between physiology and temperature has a large influence on population-level responses to climate change. In natural settings, direct thermal effects on metabolism may be exaggerated or offset by behavioural responses influencing individual energy balance. Drawing on a newly developed proxy, we provide the first estimates of the thermal performance curve of field metabolism in a wild fish. We investigate the thermal sensitivity of field metabolic rate in two sympatric, genetically distinct ecotypes of Atlantic cod from the Skagerrak coast of southern Norway. The combined ecotype median of field metabolic rate increased with increasing temperature until around 16°C, coincident with the thermal optimum for growth for juvenile Atlantic cod. Individual cod experienced temperatures in excess of the thermal optimum for field metabolic rate, indicating some degree of thermal limitation of field metabolism in a complex natural environment with the potential for thermal refugia. The two cod ecotypes showed different thermal performance curves for field metabolic rate, revealing that genetic components to temperature sensitivity persist beyond acclimation effects. The cold-adapted fjord ecotype maintained higher field metabolic rates at cooler temperatures than the warm-adapted North Sea ecotype, which showed clear preference for warmer waters around the thermal optimum. Field metabolic rates of the two ecotypes were strongly influenced by year and location of sampling, implying more complex behavioural responses to environmental conditions. We emphasise that the energy uses reflecting physiological conditions in the field should be considered in the evaluation of the effect of climatic variables on fish population dynamics and demonstrate that otolith isotopes provide an analytical framework to answer this question.

OriginalsprogEngelsk
TidsskriftOikos
Vol/bind130
Nummer2
Sider (fra-til)287-299
Antal sider13
ISSN0030-1299
DOI
StatusUdgivet - feb. 2021

Bibliografisk note

Funding Information:
– This work is supported by the European Commission Marie Skłodowska‐Curie Individual Fellowships (‘OTOLOG' project, 707481) and the European Regional Development Fund (Interreg IVa, ‘MarGen' and ‘MarGen II' projects). Funding

Publisher Copyright:
© 2020 Nordic Society Oikos. Published by John Wiley & Sons Ltd

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Se relationer på Aarhus Universitet Citationsformater

ID: 213854412