Finite Cohen-Macaulay type and smooth non-commutative schemes

Peter Jørgensen*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

7 Citationer (Scopus)

Abstract

A commutative local Cohen-Macaulay ring R of finite Cohen-Macaulay type is known to be an isolated singularity; that is, Spec(R) \ {m} is smooth. This paper proves a non-commutative analogue. Namely, if A is a (non-commutative) graded Artin-Schelter Cohen-Macaulay algebra which is fully bounded Noetherian and has finite Cohen-Macaulay type, then the non-commutative projective scheme determined by A is smooth.

OriginalsprogEngelsk
TidsskriftCanadian Journal of Mathematics
Vol/bind60
Nummer2
Sider (fra-til)379-390
Antal sider12
ISSN0008-414X
DOI
StatusUdgivet - apr. 2008
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Finite Cohen-Macaulay type and smooth non-commutative schemes'. Sammen danner de et unikt fingeraftryk.

Citationsformater