Finding small OBDDs for incompletely specified truth tables is hard

Peter Bro Miltersen, Jesper Torp Kristensen

    Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

    Abstract

    We present an efficient reduction mapping undirected graphs
    G with n = 2^k vertices for integers k to tables of partially
    specified Boolean functions g: {0,1}^(4k+1) -> {0,1,*}
    so that for any integer m, G has a vertex colouring
    using m colours if and only if g has a consistent ordered binary
    decision diagram with at most (2m + 2)n^2 + 4n decision nodes.
    From this it follows that the problem of finding a minimum-sized
    consistent OBDD for an incompletely specified truth table is
    NP-hard and also hard to approximate.
    OriginalsprogEngelsk
    TitelComputing and Combinatorics : 12th Annual International Conference, COCOON 2006, Taipei, Taiwan, August 15-18, 2006. Proceedings
    RedaktørerDanny Z. Chen, D. T. Lee
    Antal sider8
    ForlagSpringer
    Publikationsdato2006
    Sider489-496
    DOI
    StatusUdgivet - 2006
    BegivenhedAnnual International Conference on Computing and Combinatorics. COCOON 2006 - Taipei, Taiwan
    Varighed: 15 aug. 200618 aug. 2006
    Konferencens nummer: 12

    Konference

    KonferenceAnnual International Conference on Computing and Combinatorics. COCOON 2006
    Nummer12
    Land/OmrådeTaiwan
    ByTaipei
    Periode15/08/200618/08/2006
    NavnLecture Notes in Computer Science
    Vol/bind4112
    ISSN0302-9743

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Finding small OBDDs for incompletely specified truth tables is hard'. Sammen danner de et unikt fingeraftryk.

    Citationsformater