Finding small OBDDs for incompletely specified truth tables is hard

Jesper Torp Kristensen, Peter Bro Miltersen

    Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskning

    2 Citationer (Scopus)

    Abstract

    We present an efficient reduction mapping undirected graphs G with n = 2^k vertices for integers k to tables of partially specified Boolean functions g: {0,1}^(4k+1) -> {0,1,*} so that for any integer m, G has a vertex colouring using m colours if and only if g has a consistent ordered binary decision diagram with at most (2m + 2)n^2 + 4n decision nodes. From this it follows that the problem of finding a minimum-sized consistent OBDD for an incompletely specified truth table is NP-hard and also hard to approximate
    OriginalsprogEngelsk
    TidsskriftElectronic Colloquium on Computational Complexity
    NummerTR06-004
    Sider (fra-til)1-6
    ISSN1433-8092
    StatusUdgivet - 2006

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Finding small OBDDs for incompletely specified truth tables is hard'. Sammen danner de et unikt fingeraftryk.

    Citationsformater