Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Forlagets udgivne version, 585 KB, PDF-dokument
Forlagets udgivne version
We describe an algorithm which finds binomials in a given ideal I⊂ Q[x 1, ⋯ , x n] and in particular decides whether binomials exist in I at all. Binomials in polynomial ideals can be well hidden. For example, the lowest degree of a binomial cannot be bounded as a function of the number of indeterminates, the degree of the generators, or the Castelnuovo–Mumford regularity. We approach the detection problem by reduction to the Artinian case using tropical geometry. The Artinian case is solved with algorithms from computational number theory.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 16 |
Tidsskrift | Research In the Mathematical Sciences |
Vol/bind | 4 |
Nummer | 16 |
ISSN | 2197-9847 |
DOI | |
Status | Udgivet - 2017 |
Se relationer på Aarhus Universitet Citationsformater
ID: 120354467