Finding binomials in polynomial ideals

Anders Nedergaard Jensen, Thomas Kahle, Lukas Katthän

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

167 Downloads (Pure)

Abstract

We describe an algorithm which finds binomials in a given ideal I⊂ Q[x 1, ⋯ , x n] and in particular decides whether binomials exist in I at all. Binomials in polynomial ideals can be well hidden. For example, the lowest degree of a binomial cannot be bounded as a function of the number of indeterminates, the degree of the generators, or the Castelnuovo–Mumford regularity. We approach the detection problem by reduction to the Artinian case using tropical geometry. The Artinian case is solved with algorithms from computational number theory.

OriginalsprogEngelsk
Artikelnummer16
TidsskriftResearch In the Mathematical Sciences
Vol/bind4
Nummer16
ISSN2197-9847
DOI
StatusUdgivet - 2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Finding binomials in polynomial ideals'. Sammen danner de et unikt fingeraftryk.

Citationsformater