Filtering with relational similarity

Vladimir Mic*, Pavel Zezula

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

For decades, the success of the similarity search has been based on detailed quantifications of pairwise similarities of objects. Currently, the search features have become much more precise but also bulkier, and the similarity computations are more time-consuming. We show that nearly no precise similarity quantifications are needed to evaluate the k nearest neighbours (kNN) queries that dominate real-life applications. Based on the well-known fact that a selection of the most similar alternative out of several options is a much easier task than deciding the absolute similarity scores, we propose the search based on an epistemologically simpler concept of relational similarity. Having arbitrary objects q,o1,o2 from the search domain, the kNN search is solvable just by the ability to choose the more similar object to q out of o1,o2. To support the filtering efficiency, we also consider a neutral option, i.e., equal similarities of q,o1 and q,o2. We formalise such concept and discuss its advantages with respect to similarity quantifications, namely the efficiency, robustness and scalability with respect to the dataset size. Our pioneering implementation of the relational similarity search for the Euclidean and Cosine spaces demonstrates robust filtering power and efficiency compared to several contemporary techniques.

OriginalsprogEngelsk
Artikelnummer102345
TidsskriftInformation Systems
Vol/bind122
ISSN0306-4379
DOI
StatusUdgivet - maj 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Filtering with relational similarity'. Sammen danner de et unikt fingeraftryk.

Citationsformater