TY - JOUR
T1 - Factors controlling the carbon isotope composition of dissolved inorganic carbon and methane in marine porewater
T2 - an evaluation by reaction-transport modelling
AU - Meister, Patrick
AU - Liu, Bo
AU - Khalili, Arzhang
AU - Böttcher, Michael E.
AU - Jørgensen, Bo Barker
PY - 2019/12
Y1 - 2019/12
N2 - Carbon isotope compositions of dissolved inorganic carbon (DIC) and methane (CH4) in porewater of marine sediments at seafloor temperatures show very large variation covering a δ13C range from −100‰ to +35‰. These extreme values are the result of isotope fractionation during microbial carbon metabolism, but the combined effect of all factors controlling the isotope distributions is still not completely understood. We used a model approach to evaluate the effects of reaction and transport on carbon isotope distributions in modern sediment porewater under steady state. Simulated δ13CDIC profiles typically show negative values in the sulphate reduction zone and more positive values in the methanogenic zone. With increasing depth in the methanogenic zone, δ13C values approach a distribution where the offset of δ13CDIC from δ13C of total organic carbon (TOC) to more positive values is similar to the offset of δ13CCH4 to more negative values (δ13CDIC and δ13CCH4 approach a symmetric distribution relative to δ13CTOC). The model never exceeds this symmetry of the DIC-CH4 couple towards more positive values under steady-state conditions in a purely diffusive system. Our model shows that to reach an offset in δ13C between DIC and CH4 in the order of 70‰, as frequently observed in methanogenic zones, a larger fractionation than reported from culture experiments with acetoclastic or autotrophic methanogens would be required. In fact, the observed isotope offset in natural systems would be consistent with the known inorganic equilibrium fractionation factor at in-situ temperature, which may suggest isotope exchange via a microbial pathway, during methanogenesis. Furthermore, the model reproduces strongly negative δ13CCH4 values at the sulphate methane transition (SMT) as result of a reverse flux of carbon from DIC to CH4 during AOM. Such a reverse AOM has no influence on the δ13CDIC at the SMT as methane is almost completely consumed. Only at high sedimentation rate combined with low porosity, δ13CDIC values significantly more negative than δ13CTOC occur at the SMT.
AB - Carbon isotope compositions of dissolved inorganic carbon (DIC) and methane (CH4) in porewater of marine sediments at seafloor temperatures show very large variation covering a δ13C range from −100‰ to +35‰. These extreme values are the result of isotope fractionation during microbial carbon metabolism, but the combined effect of all factors controlling the isotope distributions is still not completely understood. We used a model approach to evaluate the effects of reaction and transport on carbon isotope distributions in modern sediment porewater under steady state. Simulated δ13CDIC profiles typically show negative values in the sulphate reduction zone and more positive values in the methanogenic zone. With increasing depth in the methanogenic zone, δ13C values approach a distribution where the offset of δ13CDIC from δ13C of total organic carbon (TOC) to more positive values is similar to the offset of δ13CCH4 to more negative values (δ13CDIC and δ13CCH4 approach a symmetric distribution relative to δ13CTOC). The model never exceeds this symmetry of the DIC-CH4 couple towards more positive values under steady-state conditions in a purely diffusive system. Our model shows that to reach an offset in δ13C between DIC and CH4 in the order of 70‰, as frequently observed in methanogenic zones, a larger fractionation than reported from culture experiments with acetoclastic or autotrophic methanogens would be required. In fact, the observed isotope offset in natural systems would be consistent with the known inorganic equilibrium fractionation factor at in-situ temperature, which may suggest isotope exchange via a microbial pathway, during methanogenesis. Furthermore, the model reproduces strongly negative δ13CCH4 values at the sulphate methane transition (SMT) as result of a reverse flux of carbon from DIC to CH4 during AOM. Such a reverse AOM has no influence on the δ13CDIC at the SMT as methane is almost completely consumed. Only at high sedimentation rate combined with low porosity, δ13CDIC values significantly more negative than δ13CTOC occur at the SMT.
KW - Anaerobic methane oxidation
KW - Carbon isotopes
KW - Marine porewater
KW - Methane
KW - Methanogenesis
KW - Reaction-transport model
UR - http://www.scopus.com/inward/record.url?scp=85072256419&partnerID=8YFLogxK
U2 - 10.1016/j.jmarsys.2019.103227
DO - 10.1016/j.jmarsys.2019.103227
M3 - Journal article
AN - SCOPUS:85072256419
SN - 0924-7963
VL - 200
JO - Journal of Marine Systems
JF - Journal of Marine Systems
M1 - 103227
ER -