Abstract
Climate change is a major determinant of shifts in species’ distribution ranges and habitat suitability. The Arctic is one of the planet’s most rapidly warming regions, yet biogeographic responses to contemporary climate change remain unknown for most cold-adapted mammalian species. Using the maximum entropy machine learning algorithm and 40 years (1981–2020) of observation data of muskoxen (Ovibos moschatus) collected across the Northeast Greenland National Park (NGNP), we detect rapid northward shifts (69–108 km per decade) of high to medium suitable habitat coinciding with a southward shift (27 km per decade) of low suitable habitat. Biogeographic response rates accelerated after the start of the twenty-frst century, when anomalies in temperature and precipitation became more frequent and intensified. Our study shows that contemporary climate change has led to
extreme directional shifts in habitat suitability for the largest herbivore roaming the Arctic tundra when compared to other species from around the globe. The consequences of these extreme directional shifts in habitat suitability on local population persistence remain to be determined but gene flow and dispersal capacity across the rugged Arctic landscape are likely important drivers
extreme directional shifts in habitat suitability for the largest herbivore roaming the Arctic tundra when compared to other species from around the globe. The consequences of these extreme directional shifts in habitat suitability on local population persistence remain to be determined but gene flow and dispersal capacity across the rugged Arctic landscape are likely important drivers
Originalsprog | Engelsk |
---|---|
Artikelnummer | 31 |
Tidsskrift | Climatic Change |
Vol/bind | 176 |
Nummer | 4 |
ISSN | 0165-0009 |
DOI | |
Status | Udgivet - apr. 2023 |