Abstract
Let G be a group, and let χ and μ be characters of G. We find the solutions of the functional equation f(xy) = f(x) χ(y) + μ(x) f(y) , x, y∈ G, where f: G→ C is the unknown function. This enables us to solve its Pexiderized version f(xy) = g(x) h1(y) + μ(x) h2(y) , x, y∈ G, in which f, g, h1, h2: G→ C are the unknown functions.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Aequationes Mathematicae |
Vol/bind | 93 |
Nummer | 2 |
Sider (fra-til) | 467-484 |
Antal sider | 18 |
ISSN | 0001-9054 |
DOI | |
Status | Udgivet - 2019 |