Exponential functionals of Brownian motion and class-one Whittaker functions

Fabrice Baudoin*, Neil O'Connell

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

22 Citationer (Scopus)

Abstract

We consider exponential functionals of a Brownian motion with drift in Rn, defined via a collection of linear functionals. We give a characterisation of the Laplace transform of their joint law as the unique bounded solution, up to a constant factor, to a Schrödinger-type partial differential equation. We derive a similar equation for the probability density. We then characterise all diffusions which can be interpreted as having the law of the Brownian motion with drift conditioned on the law of its exponential functionals. In the case where the family of linear functionals is a set of simple roots, the Laplace transform of the joint law of the corresponding exponential functionals can be expressed in terms of a (class-one) Whittaker function associated with the corresponding root system. In this setting, we establish some basic properties of the corresponding diffusion processes.

OriginalsprogEngelsk
TidsskriftAnnales de l'institut Henri Poincare (B) Probability and Statistics
Vol/bind47
Nummer4
Sider (fra-til)1096-1120
Antal sider25
ISSN0246-0203
DOI
StatusUdgivet - nov. 2011
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Exponential functionals of Brownian motion and class-one Whittaker functions'. Sammen danner de et unikt fingeraftryk.

Citationsformater