Erlangization/Canadization of Phase-Type Jump Diffusions, with Applications to Barrier Options

Søren Asmussen*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

For a jump diffusion with upward phase-type jumps with p phases, the maximum before an independent Erlang time eηq with q stages and rate parameter η is again phase-type with q(p+1) phases. An iterative scheme for computing the phase generator is presented and applied to representing the price of a barrier option with time horizon eηq as a single ordinary integral. Canadization then means to approximate a fixed horizon T with an eηq satisying Eeηq=T for a sufficiently large q. Similar results holds for Greeks like the delta and the gamma. A numerical example is given for a down-and-in call option and the Canadization is combined with Richardson extrapolation. Finally, a recursion is developed that only requires the iteration to be performed in p+1 dimensions.

OriginalsprogEngelsk
TidsskriftJournal of the Indian Society for Probability and Statistics
Vol/bind25
Nummer2
Sider (fra-til)575-596
Antal sider22
DOI
StatusUdgivet - dec. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Erlangization/Canadization of Phase-Type Jump Diffusions, with Applications to Barrier Options'. Sammen danner de et unikt fingeraftryk.

Citationsformater