Aarhus Universitets segl

Equilibrium and ground states from Cayley graphs

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Equilibrium and ground states from Cayley graphs. / Thomsen, Klaus; Christensen, Johannes.
I: Journal of Functional Analysis, Bind 274, Nr. 5, 2018, s. 1553-1586.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

Thomsen, K & Christensen, J 2018, 'Equilibrium and ground states from Cayley graphs', Journal of Functional Analysis, bind 274, nr. 5, s. 1553-1586. https://doi.org/10.1016/j.jfa.2017.06.019

APA

Thomsen, K., & Christensen, J. (2018). Equilibrium and ground states from Cayley graphs. Journal of Functional Analysis, 274(5), 1553-1586. https://doi.org/10.1016/j.jfa.2017.06.019

CBE

Thomsen K, Christensen J. 2018. Equilibrium and ground states from Cayley graphs. Journal of Functional Analysis. 274(5):1553-1586. https://doi.org/10.1016/j.jfa.2017.06.019

MLA

Thomsen, Klaus og Johannes Christensen. "Equilibrium and ground states from Cayley graphs". Journal of Functional Analysis. 2018, 274(5). 1553-1586. https://doi.org/10.1016/j.jfa.2017.06.019

Vancouver

Thomsen K, Christensen J. Equilibrium and ground states from Cayley graphs. Journal of Functional Analysis. 2018;274(5):1553-1586. doi: 10.1016/j.jfa.2017.06.019

Author

Thomsen, Klaus ; Christensen, Johannes. / Equilibrium and ground states from Cayley graphs. I: Journal of Functional Analysis. 2018 ; Bind 274, Nr. 5. s. 1553-1586.

Bibtex

@article{f202ac98f9284767bc73bd80152ba6a9,
title = "Equilibrium and ground states from Cayley graphs",
abstract = "We present a general framework for the study of KMS states of generalized gauge actions on the C ⁎-algebra of a Cayley graph which is pointed by considering the neutral element of the group as a distinguished vertex. We use this framework to give a concrete description of a particular kind of KMS states on the C ⁎-algebras that we call abelian KMS states. If the group is nilpotent all KMS states are abelian and our analysis gives the full picture in this case. We then describe the ground states that are limits of abelian KMS states when the temperature goes to zero.",
keywords = "Abelian KMS states, Cayley graphs, Ground states, KMS states",
author = "Klaus Thomsen and Johannes Christensen",
year = "2018",
doi = "10.1016/j.jfa.2017.06.019",
language = "English",
volume = "274",
pages = "1553--1586",
journal = "Journal of Functional Analysis",
issn = "0022-1236",
publisher = "Academic Press",
number = "5",

}

RIS

TY - JOUR

T1 - Equilibrium and ground states from Cayley graphs

AU - Thomsen, Klaus

AU - Christensen, Johannes

PY - 2018

Y1 - 2018

N2 - We present a general framework for the study of KMS states of generalized gauge actions on the C ⁎-algebra of a Cayley graph which is pointed by considering the neutral element of the group as a distinguished vertex. We use this framework to give a concrete description of a particular kind of KMS states on the C ⁎-algebras that we call abelian KMS states. If the group is nilpotent all KMS states are abelian and our analysis gives the full picture in this case. We then describe the ground states that are limits of abelian KMS states when the temperature goes to zero.

AB - We present a general framework for the study of KMS states of generalized gauge actions on the C ⁎-algebra of a Cayley graph which is pointed by considering the neutral element of the group as a distinguished vertex. We use this framework to give a concrete description of a particular kind of KMS states on the C ⁎-algebras that we call abelian KMS states. If the group is nilpotent all KMS states are abelian and our analysis gives the full picture in this case. We then describe the ground states that are limits of abelian KMS states when the temperature goes to zero.

KW - Abelian KMS states

KW - Cayley graphs

KW - Ground states

KW - KMS states

U2 - 10.1016/j.jfa.2017.06.019

DO - 10.1016/j.jfa.2017.06.019

M3 - Journal article

VL - 274

SP - 1553

EP - 1586

JO - Journal of Functional Analysis

JF - Journal of Functional Analysis

SN - 0022-1236

IS - 5

ER -