Aarhus Universitets segl

Enteric methane emission of dairy cows supplemented with iodoform in a dose–response study

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

Enteric methane (CH4) emission is one of the major greenhouse gasses originating from cattle. Iodoform has in studies been found to be a potent mitigator of rumen CH4 formation in vitro. This study aimed to quantify potential of iodoform as an anti-methanogenic feed additive for dairy cows and investigate effects on feed intake, milk production, feed digestibility, rumen microbiome, and animal health indicators. The experiment was conducted as a 4 × 4 Latin square design using four lactating rumen, duodenal, and ileal cannulated Danish Holstein dairy cows. The treatments consisted of four different doses of iodoform (1) 0 mg/day, (2) 320 mg/day, (3) 640 mg/day, and (4) 800 mg/day. Iodoform was supplemented intra-ruminally twice daily. Each period consisted of 7-days of adaptation, 3-days of digesta and blood sampling, and 4-days of gas exchange measurements using respiration chambers. Milk yield and dry matter intake (DMI) were recorded daily. Rumen samples were collected for microbial analyses and investigated for fermentation parameters. Blood was sampled and analyzed for metabolic and health status indicators. Dry matter intake and milk production decreased linearly by maximum of 48% and 33%, respectively, with increasing dose. Methane yield (g CH4/kg DMI) decreased by maximum of 66%, while up to 125-fold increases were observed in hydrogen yield (g H2/kg DMI) with increasing dose of iodoform. Total tract digestibility of DM, OM, CP, C, NDF, and starch were unaffected by treatments, but large shifts, except for NDF, were observed for ruminal to small intestinal digestion of the nutrients. Some indicators of disturbed rumen microbial activity and fermentation dynamics were observed with increasing dose, but total number of ruminal bacteria was unaffected by treatment. Serum and plasma biomarkers did not indicate negative effects of iodoform on cow health. In conclusion, iodoform was a potent mitigator of CH4 emission. However, DMI and milk production were negatively affected and associated with indications of depressed ruminal fermentation. Future studies might reveal if depression of milk yield and feed intake can be avoided if iodoform is continuously administered by mixing it into a total mixed ration.

OriginalsprogEngelsk
Artikelnummer12797
TidsskriftScientific Reports
Vol/bind13
Nummer1
Antal sider20
ISSN2045-2322
DOI
StatusUdgivet - aug. 2023

Se relationer på Aarhus Universitet Citationsformater

ID: 339541196