Endometabolic profiling of pigmented glacier ice algae: the impact of sample processing

Elisa K. Peter*, Carsten Jaeger, Jan Lisec, R. Sven Peters, Rey Mourot, Pamela E. Rossel, Martyn Tranter, Alexandre M. Anesio, Liane G. Benning*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

Introduction: Glacier ice algae, mainly Ancylonema alaskanum and Ancylonema nordenskiöldi, bloom on Greenland Ice Sheet bare ice surfaces. They significantly decrease surface albedo due to their purple-brown pigmentation, thus increasing melt. Little is known about their metabolic adaptation and factors controlling algal growth dynamics and pigment formation. A challenge in obtaining such data is the necessity of melting samples, which delays preservation and introduces bias to metabolomic analysis. There is a need to evaluate the physiological response of algae to melting and establish consistent sample processing strategies for metabolomics of ice microbial communities. Objectives: To address the impact of sample melting procedure on metabolic characterization and establish a processing and analytical workflow for endometabolic profiling of glacier ice algae. Methods: We employed untargeted, high-resolution mass spectrometry and tested the effect of sample melt temperature (10, 15, 20 °C) and processing delay (up to 49 h) on the metabolome and lipidome, and complemented this approach with cell counts (FlowCam), photophysiological analysis (PAM) and diversity characterization. Results and Conclusion: We putatively identified 804 metabolites, with glycerolipids, glycerophospholipids and fatty acyls being the most prominent superclasses (> 50% of identified metabolites). Among the polar metabolome, carbohydrates and amino acid-derivatives were the most abundant. We show that 8% of the metabolome is affected by melt duration, with a pronounced decrease in betaine membrane lipids and pigment precursors, and an increase in phospholipids. Controlled fast melting at 10 °C resulted in the highest consistency, and is our recommendation for future supraglacial metabolomics studies.

OriginalsprogEngelsk
Artikelnummer98
TidsskriftMetabolomics
Vol/bind20
Nummer5
ISSN1573-3882
DOI
StatusUdgivet - okt. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Endometabolic profiling of pigmented glacier ice algae: the impact of sample processing'. Sammen danner de et unikt fingeraftryk.

Citationsformater