C*-algebras of homoclinic and heteroclinic structure in expansive dynamics

    Publikation: Working paper/Preprint Working paperForskning

    Abstract

    We unify various constructions of $C^*$-algebras from dynamical systems, specifically, the dimension group construction of Krieger for shift spaces, the corresponding constructions of Wagoner and Boyle, Fiebig and Fiebig for countable state Markov shifts and one-sided shift spaces, respectively, and the constructions of Ruelle and Putnam for Smale spaces. The general setup is used to analyze the structure of the $C^*$-algebras arising from the homoclinic and heteroclinic equivalence relations in expansive dynamical systems; in particular expansive group endomorphisms and automorphisms, and generalized 1-solenoids. For these dynamical systems it is shown that the $C^*$-algebras are inductive limits of homogeneous or sub-homogeneous algebras with one-dimensional spectra.
    OriginalsprogEngelsk
    UdgivelsesstedÅrhus
    UdgiverDepartment of Mathematical Sciences , University of Aarhus
    Antal sider132
    StatusUdgivet - 2007

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'C*-algebras of homoclinic and heteroclinic structure in expansive dynamics'. Sammen danner de et unikt fingeraftryk.

    Citationsformater