Aarhus Universitets segl

Electron density and thermal motion of diamond at elevated temperatures

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Electron density and thermal motion of diamond at elevated temperatures. / Beyer, Jonas; Grønbech, Thomas Bjørn Egede; Zhang, Jiawei et al.

I: Acta Crystallographica Section A: Foundations and Advances, Bind 79, Nr. Part 1, 01.2023, s. 41-50.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

Beyer, J, Grønbech, TBE, Zhang, J, Kato, K & Iversen, BB 2023, 'Electron density and thermal motion of diamond at elevated temperatures', Acta Crystallographica Section A: Foundations and Advances, bind 79, nr. Part 1, s. 41-50. https://doi.org/10.1107/S2053273322010154

APA

Beyer, J., Grønbech, T. B. E., Zhang, J., Kato, K., & Iversen, B. B. (2023). Electron density and thermal motion of diamond at elevated temperatures. Acta Crystallographica Section A: Foundations and Advances, 79(Part 1), 41-50. https://doi.org/10.1107/S2053273322010154

CBE

Beyer J, Grønbech TBE, Zhang J, Kato K, Iversen BB. 2023. Electron density and thermal motion of diamond at elevated temperatures. Acta Crystallographica Section A: Foundations and Advances. 79(Part 1):41-50. https://doi.org/10.1107/S2053273322010154

MLA

Beyer, Jonas et al. "Electron density and thermal motion of diamond at elevated temperatures". Acta Crystallographica Section A: Foundations and Advances. 2023, 79(Part 1). 41-50. https://doi.org/10.1107/S2053273322010154

Vancouver

Beyer J, Grønbech TBE, Zhang J, Kato K, Iversen BB. Electron density and thermal motion of diamond at elevated temperatures. Acta Crystallographica Section A: Foundations and Advances. 2023 jan.;79(Part 1):41-50. doi: 10.1107/S2053273322010154

Author

Beyer, Jonas ; Grønbech, Thomas Bjørn Egede ; Zhang, Jiawei et al. / Electron density and thermal motion of diamond at elevated temperatures. I: Acta Crystallographica Section A: Foundations and Advances. 2023 ; Bind 79, Nr. Part 1. s. 41-50.

Bibtex

@article{fcddcaa8fd434a4f90ba5d1fdbef4646,
title = "Electron density and thermal motion of diamond at elevated temperatures",
abstract = "The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson-Hansen-Coppens-Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be ΘD = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range.",
keywords = "Charge density, Materials chemistry, Debye temperature, Powder x-ray diffraction, Density functional theory",
author = "Jonas Beyer and Gr{\o}nbech, {Thomas Bj{\o}rn Egede} and Jiawei Zhang and Kenichi Kato and Iversen, {Bo Brummerstedt}",
year = "2023",
month = jan,
doi = "10.1107/S2053273322010154",
language = "English",
volume = "79",
pages = "41--50",
journal = "Acta Crystallographica Section A: Foundations and Advances",
issn = "2053-2733",
publisher = "John Wiley and Sons Inc.",
number = "Part 1",

}

RIS

TY - JOUR

T1 - Electron density and thermal motion of diamond at elevated temperatures

AU - Beyer, Jonas

AU - Grønbech, Thomas Bjørn Egede

AU - Zhang, Jiawei

AU - Kato, Kenichi

AU - Iversen, Bo Brummerstedt

PY - 2023/1

Y1 - 2023/1

N2 - The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson-Hansen-Coppens-Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be ΘD = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range.

AB - The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson-Hansen-Coppens-Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be ΘD = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range.

KW - Charge density

KW - Materials chemistry

KW - Debye temperature

KW - Powder x-ray diffraction

KW - Density functional theory

UR - http://www.scopus.com/inward/record.url?scp=85145537387&partnerID=8YFLogxK

U2 - 10.1107/S2053273322010154

DO - 10.1107/S2053273322010154

M3 - Journal article

C2 - 36601762

VL - 79

SP - 41

EP - 50

JO - Acta Crystallographica Section A: Foundations and Advances

JF - Acta Crystallographica Section A: Foundations and Advances

SN - 2053-2733

IS - Part 1

ER -