Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Electron density and thermal motion of diamond at elevated temperatures. / Beyer, Jonas; Grønbech, Thomas Bjørn Egede; Zhang, Jiawei et al.
I: Acta Crystallographica Section A: Foundations and Advances, Bind 79, Nr. Part 1, 01.2023, s. 41-50.Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
}
TY - JOUR
T1 - Electron density and thermal motion of diamond at elevated temperatures
AU - Beyer, Jonas
AU - Grønbech, Thomas Bjørn Egede
AU - Zhang, Jiawei
AU - Kato, Kenichi
AU - Iversen, Bo Brummerstedt
PY - 2023/1
Y1 - 2023/1
N2 - The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson-Hansen-Coppens-Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be ΘD = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range.
AB - The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson-Hansen-Coppens-Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be ΘD = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range.
KW - Charge density
KW - Materials chemistry
KW - Debye temperature
KW - Powder x-ray diffraction
KW - Density functional theory
UR - http://www.scopus.com/inward/record.url?scp=85145537387&partnerID=8YFLogxK
U2 - 10.1107/S2053273322010154
DO - 10.1107/S2053273322010154
M3 - Journal article
C2 - 36601762
VL - 79
SP - 41
EP - 50
JO - Acta Crystallographica Section A: Foundations and Advances
JF - Acta Crystallographica Section A: Foundations and Advances
SN - 2053-2733
IS - Part 1
ER -