Einstein-Weyl deformations and submanifolds

Henrik Pedersen*, Yat Sun Poon, Andrew Swann

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

16 Citationer (Scopus)

Abstract

Motivated by new explicit positive Ricci curvature metrics on the four-sphere which are also Einstein-Weyl, we show that the dimension of the Einstein-Weyl moduli near certain Einstein metrics is bounded by the rank of the isometry group and that any Weyl manifold can be embedded as a hypersurface with prescribed second fundamental form in some Einstein-Weyl space. Closed four-dimensional Einstein-Weyl manifolds are proved to be absolute minima of the L2-norm of the curvature of Weyl manifolds and a local version of the Lafontaine inequality is obtained. The above metrics on the four-sphere are shown to contain minimal hypersurfaces isometric to S1 × S2 whose second fundamental form has constant length.

OriginalsprogEngelsk
TidsskriftInternational Journal of Mathematics
Vol/bind7
Nummer5
Sider (fra-til)705-719
Antal sider15
ISSN0129-167X
DOI
StatusUdgivet - 1 okt. 1996
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Einstein-Weyl deformations and submanifolds'. Sammen danner de et unikt fingeraftryk.

Citationsformater