Aarhus Universitets segl

Eigenstates of the Neumann Magnetic Laplacian with Vanishing Magnetic Field

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Eigenstates of the Neumann Magnetic Laplacian with Vanishing Magnetic Field. / Miqueu, Jean Philippe.

I: Annales Henri Poincare, Bind 19, Nr. 7, 01.07.2018, s. 2021-2068.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

APA

CBE

MLA

Vancouver

Miqueu JP. Eigenstates of the Neumann Magnetic Laplacian with Vanishing Magnetic Field. Annales Henri Poincare. 2018 jul. 1;19(7):2021-2068. doi: 10.1007/s00023-018-0681-7

Author

Miqueu, Jean Philippe. / Eigenstates of the Neumann Magnetic Laplacian with Vanishing Magnetic Field. I: Annales Henri Poincare. 2018 ; Bind 19, Nr. 7. s. 2021-2068.

Bibtex

@article{93397a3336a54d03a95dda6a12a110fa,
title = "Eigenstates of the Neumann Magnetic Laplacian with Vanishing Magnetic Field",
abstract = "This paper is devoted to the spectral analysis of the magnetic Laplacian with semiclassical parameter h> 0 , defined on a bounded and regular domain Ω of R2 with Neumann magnetic boundary condition, in the case when the magnetic field vanishes along a smooth curve intersecting ∂Ω. We investigate the behavior of the eigenvalues and the associated eigenfunctions when the semiclassical parameter h tends to 0. We provide a one term asymptotic of the first eigenvalue as well as a full asymptotic expansion of the bottom of the spectrum as h→ 0.",
author = "Miqueu, {Jean Philippe}",
year = "2018",
month = jul,
day = "1",
doi = "10.1007/s00023-018-0681-7",
language = "English",
volume = "19",
pages = "2021--2068",
journal = "Annales Henri Poincare",
issn = "1424-0637",
publisher = "Springer Basel AG",
number = "7",

}

RIS

TY - JOUR

T1 - Eigenstates of the Neumann Magnetic Laplacian with Vanishing Magnetic Field

AU - Miqueu, Jean Philippe

PY - 2018/7/1

Y1 - 2018/7/1

N2 - This paper is devoted to the spectral analysis of the magnetic Laplacian with semiclassical parameter h> 0 , defined on a bounded and regular domain Ω of R2 with Neumann magnetic boundary condition, in the case when the magnetic field vanishes along a smooth curve intersecting ∂Ω. We investigate the behavior of the eigenvalues and the associated eigenfunctions when the semiclassical parameter h tends to 0. We provide a one term asymptotic of the first eigenvalue as well as a full asymptotic expansion of the bottom of the spectrum as h→ 0.

AB - This paper is devoted to the spectral analysis of the magnetic Laplacian with semiclassical parameter h> 0 , defined on a bounded and regular domain Ω of R2 with Neumann magnetic boundary condition, in the case when the magnetic field vanishes along a smooth curve intersecting ∂Ω. We investigate the behavior of the eigenvalues and the associated eigenfunctions when the semiclassical parameter h tends to 0. We provide a one term asymptotic of the first eigenvalue as well as a full asymptotic expansion of the bottom of the spectrum as h→ 0.

UR - http://www.scopus.com/inward/record.url?scp=85045760512&partnerID=8YFLogxK

U2 - 10.1007/s00023-018-0681-7

DO - 10.1007/s00023-018-0681-7

M3 - Journal article

AN - SCOPUS:85045760512

VL - 19

SP - 2021

EP - 2068

JO - Annales Henri Poincare

JF - Annales Henri Poincare

SN - 1424-0637

IS - 7

ER -