Aarhus Universitets segl

Eigenstates of the Neumann Magnetic Laplacian with Vanishing Magnetic Field

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Jean Philippe Miqueu

This paper is devoted to the spectral analysis of the magnetic Laplacian with semiclassical parameter h> 0 , defined on a bounded and regular domain Ω of R2 with Neumann magnetic boundary condition, in the case when the magnetic field vanishes along a smooth curve intersecting ∂Ω. We investigate the behavior of the eigenvalues and the associated eigenfunctions when the semiclassical parameter h tends to 0. We provide a one term asymptotic of the first eigenvalue as well as a full asymptotic expansion of the bottom of the spectrum as h→ 0.

OriginalsprogEngelsk
TidsskriftAnnales Henri Poincare
Vol/bind19
Nummer7
Sider (fra-til)2021-2068
Antal sider48
ISSN1424-0637
DOI
StatusUdgivet - 1 jul. 2018

Se relationer på Aarhus Universitet Citationsformater

Projekter

ID: 143691018