Eigenstates of the Neumann Magnetic Laplacian with Vanishing Magnetic Field

Jean Philippe Miqueu*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

This paper is devoted to the spectral analysis of the magnetic Laplacian with semiclassical parameter h> 0 , defined on a bounded and regular domain Ω of R2 with Neumann magnetic boundary condition, in the case when the magnetic field vanishes along a smooth curve intersecting ∂Ω. We investigate the behavior of the eigenvalues and the associated eigenfunctions when the semiclassical parameter h tends to 0. We provide a one term asymptotic of the first eigenvalue as well as a full asymptotic expansion of the bottom of the spectrum as h→ 0.

OriginalsprogEngelsk
TidsskriftAnnales Henri Poincare
Vol/bind19
Nummer7
Sider (fra-til)2021-2068
Antal sider48
ISSN1424-0637
DOI
StatusUdgivet - 1 jul. 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Eigenstates of the Neumann Magnetic Laplacian with Vanishing Magnetic Field'. Sammen danner de et unikt fingeraftryk.
  • Semiclassical Quantum Mechanics

    Fournais, S. (PI), Madsen, P. (Deltager), Mikkelsen, S. (Deltager), Miqueu, J.-P. C. (Deltager) & Bley, G. (Deltager)

    01/07/201531/12/2020

    Projekter: ProjektForskning

Citationsformater