Projekter pr. år
Abstract
This paper is devoted to the spectral analysis of the magnetic Laplacian with semiclassical parameter h> 0 , defined on a bounded and regular domain Ω of R2 with Neumann magnetic boundary condition, in the case when the magnetic field vanishes along a smooth curve intersecting ∂Ω. We investigate the behavior of the eigenvalues and the associated eigenfunctions when the semiclassical parameter h tends to 0. We provide a one term asymptotic of the first eigenvalue as well as a full asymptotic expansion of the bottom of the spectrum as h→ 0.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Annales Henri Poincare |
Vol/bind | 19 |
Nummer | 7 |
Sider (fra-til) | 2021-2068 |
Antal sider | 48 |
ISSN | 1424-0637 |
DOI | |
Status | Udgivet - 1 jul. 2018 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Eigenstates of the Neumann Magnetic Laplacian with Vanishing Magnetic Field'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Afsluttet
-
Semiclassical Quantum Mechanics
Fournais, S. (PI), Madsen, P. (Deltager), Mikkelsen, S. (Deltager), Miqueu, J.-P. C. (Deltager) & Bley, G. (Deltager)
01/07/2015 → 31/12/2020
Projekter: Projekt › Forskning