TY - JOUR
T1 - Efficient long-range conduction in cable bacteria through nickel protein wires
AU - Boschker, Henricus T.S.
AU - Cook, Perran L. M.
AU - Polerecky, Lubos
AU - Thiruvallur Eachambadi, Raghavendran
AU - Lozano, Helena
AU - Hidalgo-Martinez, Silvia
AU - Khalenkow, Dmitry
AU - Spampinato, Valentina
AU - Claes, Nathalie
AU - Kundu, Paromita
AU - Wang, Da
AU - Bals, Sara
AU - Sand, Karina
AU - Cavezza, Francesca
AU - Hauffman, Tom
AU - Bjerg, Jesper Tataru
AU - Skirtach, Andre G.
AU - Kochan, Kamila
AU - McKee, Merrilyn
AU - Wood, Bayden
AU - Bedolla, Diana
AU - Gianoncelli, Alessandra
AU - Geerlings, Nicole M. J.
AU - Van Gerven, Nani
AU - Remaut, Han
AU - Geelhoed, Jeanine S
AU - Millan-Solsona, Ruben
AU - Fumagalli, Laura
AU - Nielsen, Lars Peter
AU - Franquet, Alexis
AU - Manca, Jean V.
AU - Gomila, Gabriel
AU - Meysman, Filip Jean Remi
PY - 2021/6/28
Y1 - 2021/6/28
N2 - Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.
AB - Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.
UR - http://www.scopus.com/inward/record.url?scp=85109790725&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-24312-4
DO - 10.1038/s41467-021-24312-4
M3 - Journal article
C2 - 34183682
SN - 2041-1723
VL - 12
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 3996
ER -