Efficiency of genomic selection using Bayesian multimarker models for traits selected to reflect a wide range of heritabilities and frequencies of detected quantitative traits loci in mice

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review



  • Dagmar NRG Kapell, Sustainable Livestock Systems Group, Scottish Agricultural College, Storbritannien
  • Daniel Sorensen
  • Guosheng Su
  • Luc Janss
  • Cheryl J Ashworth, The Roslin Institute and R(D)SVS, The University of Edinburgh, Storbritannien
  • Rainer Roehe, The Roslin Institute and R(D)SVS, The University of Edinburgh, Storbritannien
Genomic selection uses dense single nucleotide polymorphisms (SNP) markers to predict breeding values, as compared to conventional evaluations which estimate polygenic effects based on phenotypic records and pedigree information. The objective of this study was to compare polygenic, genomic and combined polygenic-genomic models, including mixture models (labelled according to the percentage of genotyped SNP markers considered to have a substantial effect, ranging from 2.5 % to 100 %). The data consisted of phenotypes and SNP genotypes (10,946 SNPs) of 2,188 mice. Various growth, behavioural and physiological traits were selected for the analysis to reflect a wide range of heritabilities (0.10 to 0.74) and numbers of detected quantitative traits loci (QTL) (1 to 20) affecting those traits. The analysis included estimation of variance components and cross-validation within and between families.

Genomic selection showed a high predictive ability (PA) in comparison to traditional polygenic selection, especially for traits of moderate heritability and when cross-validation was between families. This occurred although the proportion of genomic variance of traits using genomic models was 22 to 33 % smaller than using polygenic models. Using a 2.5 % mixture genomic model, the proportion of genomic variance was 79 % smaller relative to the polygenic model. Although the proportion of variance explained by the markers was reduced further when a smaller number of SNPs was assumed to have a substantial effect on the trait, PA of genomic selection for most traits was little affected. These low mixture percentages resulted in improved estimates of single SNP effects. Genomic models implemented for traits with fewer QTLs showed even lower PA than the polygenic models.

Genomic selection generally performed better than traditional polygenic selection, especially in the context of between family cross-validation. Reducing the number of markers considered to affect the trait did not significantly change PA for most traits, particularly in the case of within family cross-validation, but increased the number of markers found to be associated with QTLs. The underlying number of QTLs affecting the trait has an effect on PA, with a smaller number of QTLs resulting in lower PA using the genomic model compared to the polygenic model.

TidsskriftB M C Genetics
StatusUdgivet - 31 maj 2012

Se relationer på Aarhus Universitet Citationsformater


Ingen data tilgængelig

ID: 46010147