Effects of Conservation Agriculture on Soil N2O Emissions and Crop Yield in Global Cereal Cropping Systems

Yuhao Zhu, Ziyang Li, Dan Zhao, Bowen Zhang, Bo Zhu, Zhisheng Yao, Ralf Kiese, Klaus Butterbach-Bahl, Minghua Zhou*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

Conservation agriculture, which involves minimal soil disturbance, permanent soil cover, and crop rotation, has been widely adopted as a sustainable agricultural practice globally. However, the effects of conservation agriculture practices on soil N2O emissions and crop yield vary based on geography, management methods, and the duration of implementation, which has hindered its widespread scientific application. In this study, we assessed the impacts of no-tillage (NT), both individually and in combination with other conservation agriculture principles, on soil N2O emissions and crop yields worldwide, based on 1270 observations from 86 peer-reviewed articles. Our results showed that conservation agriculture practices significantly increased crop yield by 9.1% while significantly reducing soil N2O emissions by 6.8% compared to conventional tillage (CT). These mitigation effects were even greater when NT was combined with other conservation agriculture principles, such as crop residue retention and crop rotation, leading to reductions in N2O emissions of over 15% and yield increases of more than 30%. Additionally, conservation agriculture was more effective at mitigating soil N2O emissions in dry climates compared to humid regions. Long-term adoption of conservation agriculture practices was found to reduce soil N2O emissions by up to 26% without compromising crop yields. Smallholder farm in Central Asia, South Asia, and sub-Saharan Africa appear particularly suitable for the adoption of conservation agriculture, whereas, in humid climates, high nitrogen (N) input management and silt-clay loam soil should be applied with caution. Overall, conservation agriculture holds significant potential for mitigating soil N2O emissions while enhancing grain yields in cereal cropping systems.

OriginalsprogEngelsk
Artikelnummere70048
TidsskriftGlobal change biology
Vol/bind31
Nummer1
ISSN1354-1013
DOI
StatusUdgivet - jan. 2025

Fingeraftryk

Dyk ned i forskningsemnerne om 'Effects of Conservation Agriculture on Soil N2O Emissions and Crop Yield in Global Cereal Cropping Systems'. Sammen danner de et unikt fingeraftryk.

Citationsformater