Edgeworth expansion for Euler approximation of continuous diffusion processes

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

In this paper we present the Edgeworth expansion for the Euler approximation scheme of a continuous diffusion process driven by a Brownian motion. Our methodology is based upon a recent work [22], which establishes Edgeworth expansions associated with asymptotic mixed normality using elements of Malliavin calculus. Potential applications of our theoretical results include higher order expansions for weak and strong approximation errors associated to the Euler scheme, and for studentized version of the error process.
OriginalsprogEngelsk
TidsskriftAnnals of Applied Probability
Vol/bind30
Nummer4
Sider (fra-til)1971-2003
Antal sider33
ISSN1050-5164
DOI
StatusUdgivet - 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 172469306