Dunkl operators and a family of realizations of osp(1|2)

H. de Bie, B. Ørsted, P. Somberg, V. Souček

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

In this paper, a family of radial deformations of the realization of the Lie superalgebra osp(1|2) in the theory of Dunkl operators is obtained. This leads to a Dirac operator depending on 3 parameters. Several function theoretical aspects of this operator are studied, such as the associated measure, the related Laguerre polynomials and the related Fourier transform. For special values of the parameters, it is possible to construct the kernel of the Fourier transform explicitly, as well as the related intertwining operator.
OriginalsprogEngelsk
TidsskriftTransactions of the American Mathematical Society
Vol/bind364
Nummer7
Sider (fra-til)3875-3902
Antal sider28
ISSN0002-9947
DOI
StatusUdgivet - 2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'Dunkl operators and a family of realizations of osp(1|2)'. Sammen danner de et unikt fingeraftryk.

Citationsformater