TY - JOUR
T1 - Dual-Tree Complex Wavelet Input Transform for Cyst Segmentation in OCT Images Based on a Deep Learning Framework
AU - Darooei, Reza
AU - Nazari, Milad
AU - Kafieh, Rahele
AU - Rabbani, Hossein
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2023/1
Y1 - 2023/1
N2 - Optical coherence tomography (OCT) represents a non-invasive, high-resolution cross-sectional imaging modality. Macular edema is the swelling of the macular region. Segmentation of fluid or cyst regions in OCT images is essential, to provide useful information for clinicians and prevent visual impairment. However, manual segmentation of fluid regions is a time-consuming and subjective procedure. Traditional and off-the-shelf deep learning methods fail to extract the exact location of the boundaries under complicated conditions, such as with high noise levels and blurred edges. Therefore, developing a tailored automatic image segmentation method that exhibits good numerical and visual performance is essential for clinical application. The dual-tree complex wavelet transform (DTCWT) can extract rich information from different orientations of image boundaries and extract details that improve OCT fluid semantic segmentation results in difficult conditions. This paper presents a comparative study of using DTCWT subbands in the segmentation of fluids. To the best of our knowledge, no previous studies have focused on the various combinations of wavelet transforms and the role of each subband in OCT cyst segmentation. In this paper, we propose a semantic segmentation composite architecture based on a novel U-net and information from DTCWT subbands. We compare different combination schemes, to take advantage of hidden information in the subbands, and demonstrate the performance of the methods under original and noise-added conditions. Dice score, Jaccard index, and qualitative results are used to assess the performance of the subbands. The combination of subbands yielded high Dice and Jaccard values, outperforming the other methods, especially in the presence of a high level of noise.
AB - Optical coherence tomography (OCT) represents a non-invasive, high-resolution cross-sectional imaging modality. Macular edema is the swelling of the macular region. Segmentation of fluid or cyst regions in OCT images is essential, to provide useful information for clinicians and prevent visual impairment. However, manual segmentation of fluid regions is a time-consuming and subjective procedure. Traditional and off-the-shelf deep learning methods fail to extract the exact location of the boundaries under complicated conditions, such as with high noise levels and blurred edges. Therefore, developing a tailored automatic image segmentation method that exhibits good numerical and visual performance is essential for clinical application. The dual-tree complex wavelet transform (DTCWT) can extract rich information from different orientations of image boundaries and extract details that improve OCT fluid semantic segmentation results in difficult conditions. This paper presents a comparative study of using DTCWT subbands in the segmentation of fluids. To the best of our knowledge, no previous studies have focused on the various combinations of wavelet transforms and the role of each subband in OCT cyst segmentation. In this paper, we propose a semantic segmentation composite architecture based on a novel U-net and information from DTCWT subbands. We compare different combination schemes, to take advantage of hidden information in the subbands, and demonstrate the performance of the methods under original and noise-added conditions. Dice score, Jaccard index, and qualitative results are used to assess the performance of the subbands. The combination of subbands yielded high Dice and Jaccard values, outperforming the other methods, especially in the presence of a high level of noise.
KW - deep learning
KW - dual-tree complex wavelet transform (DTCWT)
KW - fluid accumulation
KW - optical coherence tomography (OCT)
KW - segmentation
KW - subband
UR - http://www.scopus.com/inward/record.url?scp=85146796437&partnerID=8YFLogxK
U2 - 10.3390/photonics10010011
DO - 10.3390/photonics10010011
M3 - Journal article
AN - SCOPUS:85146796437
SN - 2304-6732
VL - 10
JO - Photonics
JF - Photonics
IS - 1
M1 - 11
ER -