Dreams: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

Circulating tumor DNA detection using next-generation sequencing (NGS) data of plasma DNA is promising for cancer identification and characterization. However, the tumor signal in the blood is often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling of Sequencing-errors) for estimating error rates of individual read positions. Using DREAMS, we develop statistical methods for variant calling (DREAMS-vc) and cancer detection (DREAMS-cc). For evaluation, we generate deep targeted NGS data of matching tumor and plasma DNA from 85 colorectal cancer patients. The DREAMS approach performs better than state-of-the-art methods for variant calling and cancer detection.

OriginalsprogEngelsk
Artikelnummer99
TidsskriftGenome Biology
Vol/bind24
Nummer1
Sider (fra-til)99
ISSN1474-7596
DOI
StatusUdgivet - dec. 2023

Fingeraftryk

Dyk ned i forskningsemnerne om 'Dreams: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection'. Sammen danner de et unikt fingeraftryk.

Citationsformater