Donaldson-Thomas Invariants of 2-Dimensional sheaves inside threefolds and modular forms

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Motivated by the S-duality conjecture, we study the Donaldson-Thomas
invariants of the 2 dimensional Gieseker stable sheaves on a threefold. These
sheaves are supported on the fibers of a nonsingular threefold X fibered over a
nonsingular curve. In the case where X is a K3 fibration, we express these
invariants in terms of the Euler characteristic of the Hilbert scheme of points
on the K3 fiber and the Noether-Lefschetz numbers of the fibration. We prove
that a certain generating function of these invariants is a vector modular form
of weight -3/2 as predicted in S-duality.
OriginalsprogEngelsk
TidsskriftAdvances in Mathematics
Vol/bind326
Sider (fra-til)79-107
Antal sider28
ISSN0001-8708
DOI
StatusUdgivet - 21 feb. 2018

    Forskningsområder

  • math.AG, hep-th

Se relationer på Aarhus Universitet Citationsformater

ID: 103280293