TY - JOUR
T1 - Dissection of ramularia leaf spot disease by integrated analysis of barley and ramularia collo-cygni transcriptome responses
AU - Sjokvist, Elisabet
AU - Lemcke, Rene
AU - Kamble, Manoj
AU - Turner, Frances
AU - Blaxter, Mark
AU - Havis, Neil H.D.
AU - Lyngkjær, Michael F.
AU - Radutoiu, Simona
PY - 2019
Y1 - 2019
N2 - Ramularia leaf spot disease (RLS), caused by the ascomycete fungus Ramularia collo-cygni, has emerged as a major economic disease of barley. No substantial resistance has been identified, so far, among barley genotypes and, based on the epidemiology of the disease, a quantitative genetic determinacy of RLS has been suggested. The relative contributions of barley and R. collo-cygni genetics to disease infection and epidemiology are practically unknown. Here, we present an integrated genome-wide analysis of host and pathogen transcriptome landscapes identified in a sensitive barley cultivar following infection by an aggressive R. collo-cygni isolate. We compared transcriptional responses in the infected and noninfected leaf samples in order to identify which molecular events are associated with RLS symptom development. We found a large proportion of R. collo-cygni genes to be expressed in planta and that many were also closely associated with the infection stage. The transition from surface to apoplastic colonization was associated with downregulation of cell wall–degrading genes and upregulation of nutrient uptake and resistance to oxidative stresses. Interestingly, the production of secondary metabolites was dynamically regulated within the fungus, indicating that R. collo-cygni produces a diverse panel of toxic compounds according to the infection stage. A defense response against R. collo-cygni was identified in barley at the early, asymptomatic infection and colonization stages. We found activation of ethylene signaling, jasmonic acid signaling, and phenylpropanoid and flavonoid pathways to be highly induced, indicative of a classical response to necrotrophic pathogens. Disease development was found to be associated with geneexpression patterns similar to those found at the onset of leaf senescence, when nutrients, possibly, are used by the infecting fungus. These analyses, combining both barley and R. collocygni transcript profiles, demonstrate the activation of complex transcriptional programs in both organisms.
AB - Ramularia leaf spot disease (RLS), caused by the ascomycete fungus Ramularia collo-cygni, has emerged as a major economic disease of barley. No substantial resistance has been identified, so far, among barley genotypes and, based on the epidemiology of the disease, a quantitative genetic determinacy of RLS has been suggested. The relative contributions of barley and R. collo-cygni genetics to disease infection and epidemiology are practically unknown. Here, we present an integrated genome-wide analysis of host and pathogen transcriptome landscapes identified in a sensitive barley cultivar following infection by an aggressive R. collo-cygni isolate. We compared transcriptional responses in the infected and noninfected leaf samples in order to identify which molecular events are associated with RLS symptom development. We found a large proportion of R. collo-cygni genes to be expressed in planta and that many were also closely associated with the infection stage. The transition from surface to apoplastic colonization was associated with downregulation of cell wall–degrading genes and upregulation of nutrient uptake and resistance to oxidative stresses. Interestingly, the production of secondary metabolites was dynamically regulated within the fungus, indicating that R. collo-cygni produces a diverse panel of toxic compounds according to the infection stage. A defense response against R. collo-cygni was identified in barley at the early, asymptomatic infection and colonization stages. We found activation of ethylene signaling, jasmonic acid signaling, and phenylpropanoid and flavonoid pathways to be highly induced, indicative of a classical response to necrotrophic pathogens. Disease development was found to be associated with geneexpression patterns similar to those found at the onset of leaf senescence, when nutrients, possibly, are used by the infecting fungus. These analyses, combining both barley and R. collocygni transcript profiles, demonstrate the activation of complex transcriptional programs in both organisms.
UR - http://www.scopus.com/inward/record.url?scp=85060517336&partnerID=8YFLogxK
U2 - 10.1094/MPMI-05-18-0113-R
DO - 10.1094/MPMI-05-18-0113-R
M3 - Journal article
C2 - 30681911
AN - SCOPUS:85060517336
SN - 0894-0282
VL - 32
SP - 176
EP - 193
JO - Molecular plant-microbe interactions
JF - Molecular plant-microbe interactions
IS - 2
ER -