Aarhus Universitets segl

Discrete approximations to Dirichlet and Neumann Laplacians on a half-space and norm resolvent convergence

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review



  • Horia Cornean, Aalborg Universitet, Danmark
  • Henrik Garde
  • Arne Jensen, Aalborg Universitet, Danmark
We extend recent results on discrete approximations of the Laplacian in in $\mathbf{R}^d$ with norm resolvent convergence to the corresponding results for Dirichlet and Neumann Laplacians on a half-space. The resolvents of the discrete Dirichlet/Neumann Laplacians are embedded into the continuum using natural discretization and embedding operators. Norm resolvent convergence to their continuous counterparts is proven with a quadratic rate in the mesh size. These results generalize with a limited rate to also include operators with a real, bounded, and Hölder continuous potential, as well as certain functions of the Dirichlet/Neumann Laplacians, including any positive real power.
TidsskriftStudia Mathematica
Sider (fra-til)225-236
Antal sider12
StatusUdgivet - 2023

Se relationer på Aarhus Universitet Citationsformater

ID: 286895673