Dimension reduction for individual ICA to decompose FMRI during real-world experiences: Principal component analysis vs. canonical correlation analysis

Valeri Tsatsishvili, Fengyu Cong, Tuomas Puoliväli, Vinoo Alluri, Petri Toiviainen, Asoke K. Nandi, Elvira Brattico, Tapani Ristaniemi

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

2 Citationer (Scopus)

Abstract

Group independent component analysis (ICA) with special assumptions is often used for analyzing functional magnetic resonance imaging (fMRI) data. Before ICA, dimension reduction is applied to separate signal and noise subspaces. For analyzing noisy fMRI data of individual participants in free-listening to naturalistic and long music, we applied individual ICA and therefore avoided the assumptions of Group ICA. We also compared principal component analysis (PCA) and canonical correlation analysis (CCA) for dimension reduction of such fMRI data. We found interesting brain activity associated with music across majority of participants, and found that PCA and CCA were comparable for dimension reduction.

OriginalsprogEngelsk
TitelESANN 2013 proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Antal sider6
Publikationsdato2013
Sider137-142
ISBN (Trykt)9782874190810
StatusUdgivet - 2013
Begivenhed21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013 - Bruges, Belgien
Varighed: 24 apr. 201326 apr. 2013

Konference

Konference21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013
Land/OmrådeBelgien
ByBruges
Periode24/04/201326/04/2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Dimension reduction for individual ICA to decompose FMRI during real-world experiences: Principal component analysis vs. canonical correlation analysis'. Sammen danner de et unikt fingeraftryk.

Citationsformater