Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Forlagets udgivne version
theta Cygni is an F3 spectral type magnitude V = 4.48 main-sequence star that was the brightest star observed by the original Kepler spacecraft mission. Short-cadence (58.8 s) photometric data using a custom aperture were first obtained during Quarter 6 ( 2010 June-September). and subsequently in Quarters 8 and 12-17. We present analyses of solar-like oscillations based on Q6 and Q8 data, identifying angular degree l = 0, 1, and 2 modes with frequencies of 1000-2700 mu Hz, a large frequency separation of 83.9 +/- 0.4 mu Hz, and maximum oscillation amplitude at frequency nu(max) = 1829 +/- 54 mu Hz. We also present analyses of new ground-based spectroscopic observations, which, combined with interferometric angular diameter measurements, give T-eff = 6697 +/- 78 K, radius 1.49 +/- 0.03 Re-circle dot, [Fe/H] = -0.02 +/- 0.06 dex, and log g = 4.23 +/- 0.03. We calculate stellar models matching these constraints using the Yale Rotating Evolution Code and the Asteroseismic Modeling Portal. The best-fit models have masses of 1.35-1.39 M-circle dot and ages of 1.0-1.6 Gyr. theta Cyg's T-eff and log g place it cooler than the red edge of the gamma Doradus instability region established from pre-Kepler ground-based observations, but just at the red edge derived from pulsation modeling. The pulsation models show gamma Dor gravity modes driven by the convective blocking mechanism, with frequencies of 1-3 cycles per day (11 to 33 mu Hz). However, gravity modes were not seen in Kepler data; one signal at 1.776 cycles per day (20.56 mu Hz) may be attributable to a faint, possibly background, binary.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 17 |
Tidsskrift | The Astrophysical Journal |
Vol/bind | 831 |
Nummer | 1 |
Antal sider | 22 |
ISSN | 0004-637X |
DOI | |
Status | Udgivet - 1 nov. 2016 |
Se relationer på Aarhus Universitet Citationsformater
ID: 105114586