TY - JOUR
T1 - Detection and characterization of lung cancer using cell-free DNA fragmentomes
AU - Mathios, Dimitrios
AU - Johansen, Jakob Sidenius
AU - Cristiano, Stephen
AU - Medina, Jamie E.
AU - Phallen, Jillian
AU - Larsen, Klaus R.
AU - Bruhm, Daniel C.
AU - Niknafs, Noushin
AU - Ferreira, Leonardo
AU - Adleff, Vilmos
AU - Chiao, Jia Yuee
AU - Leal, Alessandro
AU - Noe, Michael
AU - White, James R.
AU - Arun, Adith S.
AU - Hruban, Carolyn
AU - Annapragada, Akshaya V.
AU - Jensen, Sarah Østrup
AU - Ørntoft, Mai Britt Worm
AU - Madsen, Anders Husted
AU - Carvalho, Beatriz
AU - de Wit, Meike
AU - Carey, Jacob
AU - Dracopoli, Nicholas C.
AU - Maddala, Tara
AU - Fang, Kenneth C.
AU - Hartman, Anne Renee
AU - Forde, Patrick M.
AU - Anagnostou, Valsamo
AU - Brahmer, Julie R.
AU - Fijneman, Remond J.A.
AU - Nielsen, Hans Jørgen
AU - Meijer, Gerrit A.
AU - Andersen, Claus Lindbjerg
AU - Mellemgaard, Anders
AU - Bojesen, Stig E.
AU - Scharpf, Robert B.
AU - Velculescu, Victor E.
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91% of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC = 0.98). A higher fragmentation score represented an independent prognostic indicator of survival. This approach provides a facile avenue for non-invasive detection of lung cancer.
AB - Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91% of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC = 0.98). A higher fragmentation score represented an independent prognostic indicator of survival. This approach provides a facile avenue for non-invasive detection of lung cancer.
UR - http://www.scopus.com/inward/record.url?scp=85113257362&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-24994-w
DO - 10.1038/s41467-021-24994-w
M3 - Journal article
C2 - 34417454
AN - SCOPUS:85113257362
SN - 2041-1723
VL - 12
JO - Nature Communications
JF - Nature Communications
M1 - 5060
ER -