TY - UNPB
T1 - Decaying warm dark matter revisited
AU - Holm, Emil Brinch
AU - Tram, Thomas
AU - Hannestad, Steen
PY - 2022/5/26
Y1 - 2022/5/26
N2 - Decaying dark matter models provide a physically motivated way of channeling energy between the matter and radiation sectors. In principle, this could affect the predicted value of the Hubble constant in such a way as to accommodate the discrepancies between CMB inferences and local measurements of the same. Here, we revisit the model of warm dark matter decaying non-relativistically to invisible radiation. In particular, we rederive the background and perturbation equations starting from a decaying neutrino model and describe a new, computationally efficient method of computing the decay product perturbations up to large multipoles. We conduct MCMC analyses to constrain all three model parameters, for the first time including the mass of the decaying species, and assess the ability of the model to alleviate the Hubble and σ8 tensions, the latter being the discrepancy between the CMB and weak gravitational lensing constraints on the amplitude of matter fluctuations on an 8/h/Mpc scale. We find that the model reduces the H0 tension from 4σ to 3σ and neither alleviates nor worsens the S8 ≡ σ8(Ωm/0.3)0.5 tension, ultimately showing only mild improvements with respect to ΛCDM. However, the values of the model-specific parameters favoured by data is found to be well within the regime of relativistic decays where inverse processes are important, rendering a conclusive evaluation of the decaying warm dark matter model open to future work.
AB - Decaying dark matter models provide a physically motivated way of channeling energy between the matter and radiation sectors. In principle, this could affect the predicted value of the Hubble constant in such a way as to accommodate the discrepancies between CMB inferences and local measurements of the same. Here, we revisit the model of warm dark matter decaying non-relativistically to invisible radiation. In particular, we rederive the background and perturbation equations starting from a decaying neutrino model and describe a new, computationally efficient method of computing the decay product perturbations up to large multipoles. We conduct MCMC analyses to constrain all three model parameters, for the first time including the mass of the decaying species, and assess the ability of the model to alleviate the Hubble and σ8 tensions, the latter being the discrepancy between the CMB and weak gravitational lensing constraints on the amplitude of matter fluctuations on an 8/h/Mpc scale. We find that the model reduces the H0 tension from 4σ to 3σ and neither alleviates nor worsens the S8 ≡ σ8(Ωm/0.3)0.5 tension, ultimately showing only mild improvements with respect to ΛCDM. However, the values of the model-specific parameters favoured by data is found to be well within the regime of relativistic decays where inverse processes are important, rendering a conclusive evaluation of the decaying warm dark matter model open to future work.
U2 - 10.48550/arXiv.2205.13628
DO - 10.48550/arXiv.2205.13628
M3 - Preprint
BT - Decaying warm dark matter revisited
PB - arxiv.org
ER -