Data-driven ENZYme (DENZY) model represents soil organic carbon dynamics in forests impacted by nitrogen deposition

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Yizhao Chen, Nanjing Forestry University, Tsinghua University
  • ,
  • Ji Chen
  • Yiqi Luo, Tsinghua University, Northern Arizona University

Soil microorganisms participate in almost all soil organic carbon (SOC) transformations, but they are not represented explicitly in the current generation of earth system models. This study used a data-driven approach to incorporate extracellular enzyme activity into the Terrestrial ECOsystem (TECO) model, and the updated version was named the Data-driven ENZYme (DENZY) model. DENZY is based on results from an extensive data synthesis, which show that the CN ratio is positively correlated with ligninase activity (R2 = 0.50). The latter is inversely correlated to soil organic carbon storage. The DENZY model was parameterized using the revise database to information from a recent meta-analysis and tested for its ability to simulate SOC dynamics at Duke Forest (North Carolina, USA) from 1996 to 2007. DENZY can well simulate the observed negative relationship between ligninase activity and SOC under N deposition conditions (R2 ranges from 0.61 to 0.89). Moreover, outputs from DENZY better matched the observed SOC than its prototype model with the same parameterization. This study provides a simple and straightforward approach to effectively use real-world observations to improve SOC projections in terrestrial biogeochemical models.

OriginalsprogEngelsk
Artikelnummer107575
TidsskriftSoil Biology and Biochemistry
Vol/bind138
ISSN0038-0717
DOI
StatusUdgivet - nov. 2019

Se relationer på Aarhus Universitet Citationsformater

ID: 164909713